Non-Fiction Books:

Advances in Modern Blind Signal Separation Algorithms

Theory and Applications

Customer rating

Click to share your rating 0 ratings (0.0/5.0 average) Thanks for your vote!

Share this product

Advances in Modern Blind Signal Separation Algorithms by Kostas Kokkinakis
Save $43.00
$69.99 was $112.99
or 4 payments of $17.50 with Learn more
In stock with supplier

The item is brand new and in-stock in with one of our preferred suppliers. The item will ship from the Mighty Ape warehouse within the timeframe shown below.

Usually ships within 10-14 days

Availability

Delivering to:

Estimated arrival:

  • Around 7-13 September using Express Delivery
    Mighty Ape can deliver this product within 1-2 business days (usually overnight) to urban centres across Australia, and some remote areas. Learn more
  • Around 10-17 September using standard courier delivery

Description

With human-computer interactions and hands-free communications becoming overwhelmingly important in the new millennium, recent research efforts have been increasingly focusing on state-of-the-art multi-microphone signal processing solutions to improve speech intelligibility in adverse environments. One such prominent statistical signal processing technique is blind signal separation (BSS). BSS was first introduced in the early 1990s and quickly emerged as an area of intense research activity showing huge potential in numerous applications. BSS comprises the task of 'blindly' recovering a set of unknown signals, the so-called sources from their observed mixtures, based on very little to almost no prior knowledge about the source characteristics or the mixing structure. The goal of BSS is to process multi-sensory observations of an inaccessible set of signals in a manner that reveals their individual (and original) form, by exploiting the spatial and temporal diversity, readily accessible through a multi-microphone configuration. Proceeding blindly exhibits a number of advantages, since assumptions about the room configuration and the source-to-sensor geometry can be relaxed without affecting overall efficiency. This booklet investigates one of the most commercially attractive applications of BSS, which is the simultaneous recovery of signals inside a reverberant (naturally echoing) environment, using two (or more) microphones. In this paradigm, each microphone captures not only the direct contributions from each source, but also several reflected copies of the original signals at different propagation delays. These recordings are referred to as the convolutive mixtures of the original sources. The goal of this booklet in the lecture series is to provide insight on recent advances in algorithms, which are ideally suited for blind signal separation of convolutive speech mixtures. More importantly, specific emphasis is given in practical applications of the developed BSS algorithms associated with real-life scenarios. The developed algorithms are put in the context of modern DSP devices, such as hearing aids and cochlear implants, where design requirements dictate low power consumption and call for portability and compact size. Along these lines, this booklet focuses on modern BSS algorithms which address (1) the limited amount of processing power and (2) the small number of microphones available to the end-user.
Release date Australia
February 24th, 2010
Contributor
Series edited by Andreas Spanias
Country of Publication
United States
Imprint
Morgan & Claypool Publishers
Pages
100
Dimensions
187x235x5
ISBN-13
9781608451067
Product ID
3726658

Customer reviews

Nobody has reviewed this product yet. You could be the first!

Write a Review

Marketplace listings

There are no Marketplace listings available for this product currently.
Already own it? Create a free listing and pay just 9% commission when it sells!

Sell Yours Here

Help & options

  • If you think we've made a mistake or omitted details, please send us your feedback. Send Feedback
  • If you have a question or problem with this product, visit our Help section. Get Help
  • Seen a lower price for this product elsewhere? We'll do our best to beat it. Request a better price
Filed under...