Non-Fiction Books:

Imaginary Tale

Sorry, this product is not currently available to order

Here are some other products you might consider...

Imaginary Tale

The Story of -1



Customer rating

Click to share your rating 0 ratings (0.0/5.0 average) Thanks for your vote!

Share this product

An Imaginary Tale: The Story of -1 by Paul J. Nahin
Sorry, this product is not currently available to order


Today complex numbers have such widespread practical use--from electrical engineering to aeronautics--that few people would expect the story behind their derivation to be filled with adventure and enigma. In An Imaginary Tale, Paul Nahin tells the 2000-year-old history of one of mathematics' most elusive numbers, the square root of minus one, also known as i. He recreates the baffling mathematical problems that conjured it up, and the colorful characters who tried to solve them. In 1878, when two brothers stole a mathematical papyrus from the ancient Egyptian burial site in the Valley of Kings, they led scholars to the earliest known occurrence of the square root of a negative number. The papyrus offered a specific numerical example of how to calculate the volume of a truncated square pyramid, which implied the need for i. In the first century, the mathematician-engineer Heron of Alexandria encountered I in a separate project, but fudged the arithmetic; medieval mathematicians stumbled upon the concept while grappling with the meaning of negative numbers, but dismissed their square roots as nonsense. By the time of Descartes, a theoretical use for these elusive square roots--now called "imaginary numbers"--was suspected, but efforts to solve them led to intense, bitter debates. The notorious i finally won acceptance and was put to use in complex analysis and theoretical physics in Napoleonic times. Addressing readers with both a general and scholarly interest in mathematics, Nahin weaves into this narrative entertaining historical facts and mathematical discussions, including the application of complex numbers and functions to important problems, such as Kepler's laws of planetary motion and ac electrical circuits. This book can be read as an engaging history, almost a biography, of one of the most evasive and pervasive "numbers" in all of mathematics.

Table of Contents

List of Illustrations Ch. 1The Puzzles of Imaginary Numbers Ch. 2A First Try at Understanding the Geometry of [the square root of] -1 Ch. 3The Puzzles Start to Clear Ch. 4Using Complex Numbers Ch. 5More Uses of Complex Numbers Ch. 6Wizard Mathematics Ch. 7The Nineteenth Century, Cauchy, and the Beginning of Complex Function Theory App. AThe Fundamental Theorem of Algebra App. BThe Complex Roots of a Transcendental Equation App. C([the square root of] -1)[superscript [square root of] -1] to 135 Decimal Places, and How It Was Computed Notes Name Index Subject Index Acknowledgments


Winner of AAP/Professional and Scholarly Publishing Awards: Mathematics and Statistics 1998.
Commended for Choice Magazine Outstanding Reference/Academic Book Award 1999.

Author Biography

Paul J. Nahin is the author of many best-selling popular math books, including "Digital Dice, Chases and Escapes, Dr. Euler's Fabulous Formula, When Least Is Best, Duelling Idiots and Other Probability Puzzlers," and "Mrs. Perkins's Electric Quilt" (all Princeton). He is professor emeritus of electrical engineering at the University of New Hampshire.
Release date Australia
February 22nd, 2010
Preface by Paul J. Nahin
Country of Publication
United States
Revised edition
47 line illus. 1 halftone.
Princeton University Press
Product ID

Customer reviews

Nobody has reviewed this product yet. You could be the first!

Write a Review

Marketplace listings

There are no Marketplace listings available for this product currently.
Already own it? Create a free listing and pay just 9% commission when it sells!

Sell Yours Here

Help & options

  • If you think we've made a mistake or omitted details, please send us your feedback. Send Feedback
  • If you have a question or problem with this product, visit our Help section. Get Help
Filed under...