Non-Fiction Books:

Cambridge Series in Statistical and Probabilistic Mathematics: Series Number 48



Customer rating

Click to share your rating 0 ratings (0.0/5.0 average) Thanks for your vote!

Share this product

Cambridge Series in Statistical and Probabilistic Mathematics: Series Number 48 by Martin J Wainwright
Save $75.00
$115.99 was $190.99
or 4 payments of $29.00 with Learn more

Pre-order to reserve stock from our first shipment. Your credit card will not be charged until your order is ready to ship.

Available for pre-order now
Pre-order Price Guarantee

If you pre-order an item and the price drops before the release date, you’ll pay the lowest price. This happens automatically when you pre-order and pay by credit card.

If paying by PayPal or internet banking, and the price drops after you have paid, you can ask for the difference to be refunded. Find out more

If Mighty Ape's price changes before release, you'll pay the lowest price.


This product will be released on

Delivering to:

It should arrive:

  • 4-6 March using standard courier delivery


Recent years have witnessed an explosion in the volume and variety of data collected in all scientific disciplines and industrial settings. Such massive data sets present a number of challenges to researchers in statistics and machine learning. This book provides a self-contained introduction to the area of high-dimensional statistics, aimed at the first-year graduate level. It includes chapters that are focused on core methodology and theory - including tail bounds, concentration inequalities, uniform laws and empirical process, and random matrices - as well as chapters devoted to in-depth exploration of particular model classes - including sparse linear models, matrix models with rank constraints, graphical models, and various types of non-parametric models. With hundreds of worked examples and exercises, this text is intended both for courses and for self-study by graduate students and researchers in statistics, machine learning, and related fields who must understand, apply, and adapt modern statistical methods suited to large-scale data.

Author Biography

Martin J. Wainwright is a Chancellor's Professor at the University of California, Berkeley, with a joint appointment between the Department of Statistics and the Department of Electrical Engineering and Computer Sciences. His research lies at the nexus of statistics, machine learning, optimization, and information theory, and he has published widely in all of these disciplines. He has written two other books, one on graphical models together with Michael I. Jordan, and one on sparse learning together with Trevor Hastie and Robert Tibshirani. Among other awards, he has received the COPSS Presdients' Award, has been a Medallion Lecturer and Blackwell Lecturer for the Institute of Mathematical Statistics, and has received Best Paper Awards from the Neural Information Processing Systems (NIPS), the International Conference on Machine Learning (ICML), and the Uncertainty in Artificial Intelligence (UAI) conferences, as well as from the Institute of Electrical and Electronics Engineers (IEEE) Information Theory Society.
Release date Australia
February 28th, 2019
Worked examples or Exercises; 00 Printed music items; 00 Tables, unspecified; 00 Tables, color; 1 Tables, black and white; 00 Plates, unspecified; 00 Plates, color; 00 Plates, black and white; 00 Maps; 00 Halftones, unspecified; 00 Halftones, color; 25 Halftones, black and white; 00 Line drawings, color; 24 Line drawings, black and white
Country of Publication
United Kingdom
Cambridge University Press
Product ID

Customer previews

Nobody has previewed this product yet. You could be the first!

Write a Preview

Help & options

  • If you think we've made a mistake or omitted details, please send us your feedback. Send Feedback
  • If you have a question or problem with this product, visit our Help section. Get Help
  • Seen a lower price for this product elsewhere? We'll do our best to beat it. Request a better price
Filed under...