Non-Fiction Books:

Extracting Physics from Gravitational Waves

Testing the Strong-field Dynamics of General Relativity and Inferring the Large-scale Structure of the Universe
Click to share your rating 0 ratings (0.0/5.0 average) Thanks for your vote!

Format:

Paperback / softback
$268.99
Available from supplier

The item is brand new and in-stock with one of our preferred suppliers. The item will ship from a Mighty Ape warehouse within the timeframe shown.

Usually ships in 3-4 weeks

Buy Now, Pay Later with:

4 payments of $67.25 with Afterpay Learn more

Availability

Delivering to:

Estimated arrival:

  • Around 11-21 June using International Courier

Description

 Tjonnie Li's thesis covers two applications of Gravitational Wave astronomy: tests of General Relativity in the strong-field regime and cosmological measurements. The first part of the thesis focuses on the so-called TIGER, i.e. Test Infrastructure for General Relativity, an innovative Bayesian framework for performing hypothesis tests of modified gravity using ground-based GW data. After developing the framework, Li simulates a variety of General Relativity deviations and demonstrates the ability of the aforementioned TIGER to measure them. The advantages of the method are nicely shown and compared to other, less generic methods. Given the extraordinary implications that would result from any measured deviation from General Relativity, it is extremely important that a rigorous statistical approach for supporting these results would be in place before the first Gravitational Wave detections begin. In developing TIGER, Tjonnie Li shows a large amount of creativity and originality, and his contribution is an important step in the direction of a possible discovery of a deviation (if any) from General Relativity. In another section, Li's thesis deals with cosmology, describing an exploratory study where the possibility of cosmological parameters measurement through gravitational wave compact binary coalescence signals associated with electromagnetic counterparts is evaluated. In particular, the study explores the capabilities of the future Einstein Telescope observatory. Although of very long term-only applicability, this is again a thorough investigation, nicely put in the context of the current and the future observational cosmology.

Author Biography:

Tjonnie Li is the winner of the 2013 Stefano Braccini Thesis Prize awarded by the Gravitational Wave International Committee. He received his PhD in Physics in 2013 from the University of Amsterdam. He then became a Postdoctoral Fellow at the LIGO Laboratory, California Institute of Technology (USA),  developing analyses for detecting binary black holes and explorations into the strong-field regime of gravity. Dr. Li is a member of the LIGO Scientific Collaboration with focus on compact binary systems.
Release date Australia
October 15th, 2016
Audience
  • Professional & Vocational
Edition
Softcover reprint of the original 1st ed. 2015
Illustrations
30 Illustrations, color; 17 Illustrations, black and white; XXVI, 235 p. 47 illus., 30 illus. in color.
Pages
235
Dimensions
155x235x14
ISBN-13
9783319366647
Product ID
26203908

Customer reviews

Nobody has reviewed this product yet. You could be the first!

Write a Review

Marketplace listings

There are no Marketplace listings available for this product currently.
Already own it? Create a free listing and pay just 9% commission when it sells!

Sell Yours Here

Help & options

Filed under...