Non-Fiction Books:

High Energy Density Lithium Batteries

Materials, Engineering, Applications



Customer rating

Click to share your rating 0 ratings (0.0/5.0 average) Thanks for your vote!

Share this product

High Energy Density Lithium Batteries: Materials, Engineering, Applications
Sorry, this product is not currently available to order


Materials Engineering for High Density Energy Storage provides first-hand knowledge about the design of safe and powerful batteries and the methods and approaches for enhancing the performance of next-generation batteries. The book explores how the innovative approaches currently employed, including thin films, nanoparticles and nanocomposites, are paving new ways to performance improvement. The topic's tremendous application potential will appeal to a broad audience, including materials scientists, physicists, electrochemists, libraries, and graduate students.

Table of Contents

What are Batteries? Quantities Characterizing Batteries I. PRIMARY BATTERIES The Early Batteries The Zn/C cell: Lechlanche and Gassner Type, Current Zinc/Carbon Cells Alkaline Batteries Button Batteries: HgO Cells, Zn/AgO2 Cells, Zn/air Cells Li Primary Batteries: Li/SOCl2 Cells, Li/SO2 Cells Oxyride Batteries Damage in Primary Batteries Conclusions II SECONDARY BATTERIES Overview of Secondary Batteries: Lead-Acid Cells, Ni/Cd Cells, Secondary Li-ion Cells Cathodes: Introduction, Structural Changes, Next-Generation Materials, Size Effects Anodes for Li-Ion Batteries: Introduction, Instabilities during Electrochemical Cycling, Nanostructures Anodes, Other Materials Theoretical Analysis for Li-Ion Batteries: Introduction, Fracture Mechanism Analysis, Cahn's Gradient Thermodynamics, Design Criteria Conclusions and Future Outlook

Author Biography

Katerina E. Aifantis is researcher at the Aristotle University of Thessaloniki, Greece, in the Laboratory of Mechanics and Materials. She obtained her PhD at 21 from the University of Groningen in 2005, making her the youngest PhD ever in the Netherlands, and was post-doctoral researcher in the Department of Applied Sciences at Harvard University. She is regular contributor to and referee for peer-reviewed scientific journals. Stephen A. Hackney is Full Professor in the Department of Materials Science and Metallurgy at Michigan Technological University since 1994. He has authored more than eighty publications focused on unique experiments and results on the deformation of next generation Li-ion electrodes. He received the MTU Research Award and a Distinguished Faculty Member Award from the Michigan Association of Governing Boards. His research projects are supported by the US Department of Energy, the US National Science Foundation and the US Army. R. Vasant Kumar is Senior Lecturer at the University of Cambridge, UK. Before his appointment he was Director of the Centre for Sensors Technology in the Department of Mining and Mineral Engineering at the University of Leeds. In addition to his current position he is the Director of Environmental Monitoring and Control Ltd., a start-up company producing solid-state sensors and sensing instruments. He also serves as editor-in-chief of the Institute of Materials, Minerals and Mining's journal Mineral Processing and Extractive Metallurgy (IMM Transactions section C).
Release date Australia
April 21st, 2010
Edited by Katerina E. Aifantis Edited by R.Vasant Kumar Edited by Stephen A. Hackney
Country of Publication
Wiley-VCH Verlag GmbH
Product ID

Customer reviews

Nobody has reviewed this product yet. You could be the first!

Write a Review

Marketplace listings

There are no Marketplace listings available for this product currently.
Already own it? Create a free listing and pay just 9% commission when it sells!

Sell Yours Here

Help & options

  • If you think we've made a mistake or omitted details, please send us your feedback. Send Feedback
  • If you have a question or problem with this product, visit our Help section. Get Help
Filed under...