Computers & Internet Books:

Learn Unity ML-Agents - Fundamentals of Unity Machine Learning

Incorporate new powerful ML algorithms such as Deep Reinforcement Learning for games

Format

Paperback / softback

Customer rating

Click to share your rating 0 ratings (0.0/5.0 average) Thanks for your vote!

Share this product

Learn Unity ML-Agents - Fundamentals of Unity Machine Learning by Micheal Lanham
21% off
$63.99 was $81.99
or 4 payments of $16.00 with Learn more
In stock with supplier

The item is brand new and in-stock in with one of our preferred suppliers. The item will ship from the Mighty Ape warehouse within the timeframe shown below.

Usually ships within 10-14 days

Availability

Delivering to:

Estimated arrival:

  • Around 8-15 November using standard courier delivery

Description

Transform games into environments using machine learning and Deep learning with Tensorflow, Keras, and Unity Key Features Learn how to apply core machine learning concepts to your games with Unity Learn the Fundamentals of Reinforcement Learning and Q-Learning and apply them to your games Learn How to build multiple asynchronous agents and run them in a training scenario Book DescriptionUnity Machine Learning agents allow researchers and developers to create games and simulations using the Unity Editor, which serves as an environment where intelligent agents can be trained with machine learning methods through a simple-to-use Python API. This book takes you from the basics of Reinforcement and Q Learning to building Deep Recurrent Q-Network agents that cooperate or compete in a multi-agent ecosystem. You will start with the basics of Reinforcement Learning and how to apply it to problems. Then you will learn how to build self-learning advanced neural networks with Python and Keras/TensorFlow. From there you move o n to more advanced training scenarios where you will learn further innovative ways to train your network with A3C, imitation, and curriculum learning models. By the end of the book, you will have learned how to build more complex environments by building a cooperative and competitive multi-agent ecosystem. What you will learn Develop Reinforcement and Deep Reinforcement Learning for games. Understand complex and advanced concepts of reinforcement learning and neural networks Explore various training strategies for cooperative and competitive agent development Adapt the basic script components of Academy, Agent, and Brain to be used with Q Learning. Enhance the Q Learning model with improved training strategies such as Greedy-Epsilon exploration Implement a simple NN with Keras and use it as an external brain in Unity Understand how to add LTSM blocks to an existing DQN Build multiple asynchronous agents and run them in a training scenario Who this book is forThis book is intended for developers with an interest in using Machine learning algorithms to develop better games and simulations with Unity. The reader will be required to have a working knowledge of C# and a basic understanding of Python.

Author Biography

Micheal Lanham is a proven software architect with 20 years' experience of developing a range of software, including games, mobile, graphic, web, desktop, engineering, GIS, and machine learning applications for various industries. In 2000, Micheal began working with machine learning and would later use various technologies for a broad range of apps, from geomechanics to inspecting pipelines in 3D. He was later introduced to Unity and has been an avid developer and author of multiple Unity apps and books since.
Release date Australia
June 30th, 2018
Pages
204
Country of Publication
United Kingdom
Imprint
Packt Publishing Limited
ISBN-13
9781789138139
Product ID
28248542

Customer reviews

Nobody has reviewed this product yet. You could be the first!

Write a Review

Marketplace listings

There are no Marketplace listings available for this product currently.
Already own it? Create a free listing and pay just 9% commission when it sells!

Sell Yours Here

Help & options

  • If you think we've made a mistake or omitted details, please send us your feedback. Send Feedback
  • If you have a question or problem with this product, visit our Help section. Get Help
  • Seen a lower price for this product elsewhere? We'll do our best to beat it. Request a better price
Filed under...