Non-Fiction Books:

Mastering Machine Learning for Penetration Testing

Develop an extensive skill set to break self-learning systems using Python

Format

Paperback

Customer rating

Click to share your rating 0 ratings (0.0/5.0 average) Thanks for your vote!

Share this product

Mastering Machine Learning for Penetration Testing by Chiheb Chebbi
Save $22.00
$78.99 was $100.99
or 4 payments of $19.75 with Learn more
In stock with supplier

The item is brand new and in-stock in with one of our preferred suppliers. The item will ship from the Mighty Ape warehouse within the timeframe shown below.

Usually ships within 10-14 days

Availability

Delivering to:

Estimated arrival:

  • Around 6-13 September using standard courier delivery

Description

Become a master at penetration testing using machine learning with Python Key Features Identify ambiguities and breach intelligent security systems Perform unique cyber attacks to breach robust systems Learn to leverage machine learning algorithms Book DescriptionCyber security is crucial for both businesses and individuals. As systems are getting smarter, we now see machine learning interrupting computer security. With the adoption of machine learning in upcoming security products, it's important for pentesters and security researchers to understand how these systems work, and to breach them for testing purposes. This book begins with the basics of machine learning and the algorithms used to build robust systems. Once you've gained a fair understanding of how security products leverage machine learning, you'll dive into the core concepts of breaching such systems. Through practical use cases, you'll see how to find loopholes and surpass a self-learning security system. As you make your way through the chapters, you'll focus on topics such as network intrusion detection and AV and IDS evasion. We'll also cover the best practices when identifying ambiguities, and extensive techniques to breach an intelligent system. By the end of this book, you will be well-versed with identifying loopholes in a self-learning security system and will be able to efficiently breach a machine learning system. What you will learn Take an in-depth look at machine learning Get to know natural language processing (NLP) Understand malware feature engineering Build generative adversarial networks using Python libraries Work on threat hunting with machine learning and the ELK stack Explore the best practices for machine learning Who this book is forThis book is for pen testers and security professionals who are interested in learning techniques to break an intelligent security system. Basic knowledge of Python is needed, but no prior knowledge of machine learning is necessary.

Author Biography

Chiheb Chebbi is an InfoSec enthusiast who has experience in various aspects of information security, focusing on the investigation of advanced cyber attacks and researching cyber espionage and APT attacks. Chiheb is currently pursuing an engineering degree in computer science at TEK-UP university in Tunisia. His core interests are infrastructure penetration testing, deep learning, and malware analysis. In 2016, he was included in the Alibaba Security Research Center Hall Of Fame. His talk proposals were accepted by DeepSec 2017, Blackhat Europe 2016, and many world-class information security conferences.
Release date Australia
June 27th, 2018
Author
Pages
276
Country of Publication
United Kingdom
Imprint
Packt Publishing Limited
ISBN-13
9781788997409
Product ID
28249292

Customer reviews

Nobody has reviewed this product yet. You could be the first!

Write a Review

Marketplace listings

There are no Marketplace listings available for this product currently.
Already own it? Create a free listing and pay just 9% commission when it sells!

Sell Yours Here

Help & options

  • If you think we've made a mistake or omitted details, please send us your feedback. Send Feedback
  • If you have a question or problem with this product, visit our Help section. Get Help
  • Seen a lower price for this product elsewhere? We'll do our best to beat it. Request a better price
Filed under...