Non-Fiction Books:

Strong Nonlinear Oscillators

Analytical Solutions
Click to share your rating 0 ratings (0.0/5.0 average) Thanks for your vote!

Format:

Hardback
$412.99 was $530.99
Available from supplier

The item is brand new and in-stock with one of our preferred suppliers. The item will ship from a Mighty Ape warehouse within the timeframe shown.

Usually ships in 3-4 weeks

Buy Now, Pay Later with:

4 payments of $103.25 with Afterpay Learn more

Availability

Delivering to:

Estimated arrival:

  • Around 7-19 June using International Courier

Description

This textbook presents the motion of pure nonlinear oscillatory systems and various solution procedures which give the approximate solutions of the strong nonlinear oscillator equations. It presents the author's original method for the analytical solution procedure of the pure nonlinear oscillator system. After an introduction, the physical explanation of the pure nonlinearity and of the pure nonlinear oscillator is given. The analytical solution for free and forced vibrations of the one-degree-of-freedom strong nonlinear system with constant and time variable parameters is considered. In this second edition of the book, the number of approximate solving procedures for strong nonlinear oscillators is enlarged and a variety of procedures for solving free strong nonlinear oscillators is suggested. A method for error estimation is also given which is suitable to compare the exact and approximate solutions. Besides the oscillators with one degree-of-freedom, the one and two mass oscillatory systems with two-degrees-of-freedom and continuous oscillators are considered. The chaos and chaos suppression in ideal and non-ideal mechanical systems is explained. In this second edition more attention is given to the application of the suggested methodologies and obtained results to some practical problems in physics, mechanics, electronics and biomechanics. Thus, for the oscillator with two degrees-of-freedom, a generalization of the solving procedure is performed. Based on the obtained results, vibrations of the vocal cord are analyzed. In the book the vibration of the axially purely nonlinear rod as a continuous system is investigated. The developed solving procedure and the solutions are applied to discuss the muscle vibration. Vibrations of an optomechanical system are analyzed using the oscillations of an oscillator with odd or even quadratic nonlinearities. The extension of the forced vibrations of the system is realized by introducing the Ateb periodic excitation force which is the series of a trigonometric function. The book is self-consistent and suitable for researchers and as a textbook for students and also professionals and engineers who apply these techniques to the field of nonlinear oscillations.

Author Biography

Livija Cveticanin is Professor of Mechanics and Theory of Machines and Mechanisms. She got her PhD at the University of Novi Sad in Novi Sad, Serbia, and the degree of the Doctor of Hungarian Academy of Sciences in Budapest, Hungary. She published more than 300 papers: more than 120 in the journals which have impact factors and are cited by Scopus and Web of Science. Livija Cveticanin was the lecturer at the CISM International Centre for Mechanical Sciences. The number of citations according to Google Scholar is more than 1800. She is one of the Editors of the journal Mechanism and Machine Theory.
Release date Australia
June 13th, 2017
Audience
  • Professional & Vocational
Country of Publication
Switzerland
Edition
2nd Revised edition
Illustrations
72 black & white illustrations, 21 colour illustrations, 40 colour tables, biography
Imprint
Springer International Publishing AG
Pages
317
Publisher
Springer International Publishing AG
ISBN-13
9783319588254
Product ID
26789814

Customer reviews

Nobody has reviewed this product yet. You could be the first!

Write a Review

Marketplace listings

There are no Marketplace listings available for this product currently.
Already own it? Create a free listing and pay just 9% commission when it sells!

Sell Yours Here

Help & options

Filed under...