Non-Fiction Books:

Transient Changes in Molecular Geometries and How to Model Them

Simulating Chemical Reactions of Metal Complexes in Solution to Explore Dynamics, Solvation, Coherence, and the Link to Experiment


Paperback / softback

Customer rating

Click to share your rating 0 ratings (0.0/5.0 average) Thanks for your vote!

Share this product

Transient Changes in Molecular Geometries and How to Model Them by Asmus Ougaard Dohn
Save $120.00
$184.99 was $304.99
or 4 payments of $46.25 with Learn more
In stock with supplier

The item is brand new and in-stock in with one of our preferred suppliers. The item will ship from the Mighty Ape warehouse within the timeframe shown below.

Usually ships within 2-3 weeks


Delivering to:

Estimated arrival:

  • Around 19-25 October using Express Delivery
    Mighty Ape can deliver this product within 1-2 business days (usually overnight) to urban centres across Australia, and some remote areas. Learn more
  • Around 22-29 October using standard courier delivery


This thesis examines various aspects of excess excitation energy dissipation via dynamic changes in molecular structure, vibrational modes and solvation. The computational work is carefully described and the results are compared to experimental data obtained using femtosecond spectroscopy and x-ray scattering. The level of agreement between theory and experiment is impressive and provides both a convincing validation of the method and significant new insights into the chemical dynamics and molecular determinants of the experimental data. Hence, the method presented in the thesis has the potential to become a very important contribution to the rapidly growing field of femtosecond x-ray science, a trend reflected in the several free-electron x-ray lasers (XFELs) currently being built around the world. Light-induced chemical processes are accompanied by molecular motion of electrons and nuclei on the femtosecond time scale. Uncovering these dynamics is central to our understanding of the chemical reaction on a fundamental level. Asmus O. Dohn has implemented a highly efficient QM/MM Direct Dynamics method for predicting the solvation dynamics of transition metal complexes in solution.

Author Biography

Asmus O. Dohn studied Nano science at the University of Copenhagen, where he focused on structural properties of metallic complexes in solution, analyzed through x-ray and simulation-based methods. He obtained his Masters degree in 2011 with the highest remarks and was awarded the PhD-School Pre-Doc scholarship, for students especially suited for academic careers. He has also worked for the Nano-Science Center on communication/dissemination tasks, both directed towards the general public and for grant applications. His PhD studies included participating in a significant amount of experimental beam times at XFELs and synchrotrons, as well as a stay at the University of Iceland, working on the implementation of more advanced force-fields.
Release date Australia
October 17th, 2016
Softcover reprint of the original 1st ed. 2015
69 Illustrations, color; 15 Illustrations, black and white; XXXVIII, 146 p. 84 illus., 69 illus. in color.
Country of Publication
Springer International Publishing AG
Product ID

Customer reviews

Nobody has reviewed this product yet. You could be the first!

Write a Review

Marketplace listings

There are no Marketplace listings available for this product currently.
Already own it? Create a free listing and pay just 9% commission when it sells!

Sell Yours Here

Help & options

  • If you think we've made a mistake or omitted details, please send us your feedback. Send Feedback
  • If you have a question or problem with this product, visit our Help section. Get Help
  • Seen a lower price for this product elsewhere? We'll do our best to beat it. Request a better price
Filed under...