Non-Fiction Books:

Combating Bad Weather Part II

Fog Removal from Image and Video

Customer rating

Click to share your rating 0 ratings (0.0/5.0 average) Thanks for your vote!

Share this product

Combating Bad Weather Part II by Sudipta Mukhopadhyay
Save $50.00
$86.99 was $136.99
or 4 payments of $21.75 with Learn more
In stock with supplier

The item is brand new and in-stock in with one of our preferred suppliers. The item will ship from the Mighty Ape warehouse within the timeframe shown below.

Usually ships within 3-4 weeks


Delivering to:

Estimated arrival:

  • Around 23-29 August using Express Delivery
    Mighty Ape can deliver this product within 1-2 business days (usually overnight) to urban centres across Australia, and some remote areas. Learn more
  • Around 24-31 August using standard courier delivery


Every year lives and properties are lost in road accidents. About one-fourth of these accidents are due to low vision in foggy weather. At present, there is no algorithm that is specifically designed for the removal of fog from videos. Application of a single-image fog removal algorithm over each video frame is a time-consuming and costly affair. It is demonstrated that with the intelligent use of temporal redundancy, fog removal algorithms designed for a single image can be extended to the real-time video application. Results confirm that the presented framework used for the extension of the fog removal algorithms for images to videos can reduce the complexity to a great extent with no loss of perceptual quality. This paves the way for the real-life application of the video fog removal algorithm. In order to remove fog, an efficient fog removal algorithm using anisotropic diffusion is developed. The presented fog removal algorithm uses new dark channel assumption and anisotropic diffusion for the initialization and refinement of the airlight map, respectively. Use of anisotropic diffusion helps to estimate the better airlight map estimation. The said fog removal algorithm requires a single image captured by uncalibrated camera system. The anisotropic diffusion-based fog removal algorithm can be applied in both RGB and HSI color space. This book shows that the use of HSI color space reduces the complexity further. The said fog removal algorithm requires pre- and post-processing steps for the better restoration of the foggy image. These pre- and post-processing steps have either data-driven or constant parameters that avoid the user intervention. Presented fog removal algorithm is independent of the intensity of the fog, thus even in the case of the heavy fog presented algorithm performs well. Qualitative and quantitative results confirm that the presented fog removal algorithm outperformed previous algorithms in terms of perceptual quality, color fidelity and execution time. The work presented in this book can find wide application in entertainment industries, transportation, tracking and consumer electronics.
Release date Australia
January 30th, 2015
Country of Publication
United States
Morgan and Claypool Life Sciences
Product ID

Customer reviews

Nobody has reviewed this product yet. You could be the first!

Write a Review

Marketplace listings

There are no Marketplace listings available for this product currently.
Already own it? Create a free listing and pay just 9% commission when it sells!

Sell Yours Here

Help & options

  • If you think we've made a mistake or omitted details, please send us your feedback. Send Feedback
  • If you have a question or problem with this product, visit our Help section. Get Help
  • Seen a lower price for this product elsewhere? We'll do our best to beat it. Request a better price
Filed under...