Non-Fiction Books:

Feature Extraction in Medical Image Retrieval

A New Design of Wavelet Filter Banks
Click to share your rating 0 ratings (0.0/5.0 average) Thanks for your vote!
$412.99
Releases

Pre-order to reserve stock from our first shipment. Your credit card will not be charged until your order is ready to ship.

Available for pre-order now

Buy Now, Pay Later with:

4 payments of $103.25 with Afterpay Learn more

Pre-order Price Guarantee

If you pre-order an item and the price drops before the release date, you'll pay the lowest price. This happens automatically when you pre-order and pay by credit card.

If paying by PayPal, Afterpay, Zip or internet banking, and the price drops after you have paid, you can ask for the difference to be refunded.

If Mighty Ape's price changes before release, you'll pay the lowest price.

Availability

This product will be released on

Delivering to:

It should arrive:

  • 3-10 June using International Courier

Description

Medical imaging is fundamental to modern healthcare, and its widespread use has resulted in creation of image databases. These repositories contain images from a diverse range of modalities, multidimensional as well as co-aligned multimodality images. These image collections offer opportunity for evidence-based diagnosis, teaching, and research. Advances in medical image analysis over last two decades shows there are now many algorithms and ideas available that allow to address medical image analysis tasks in commercial solutions with sufficient performance in terms of accuracy, reliability and speed. Content-based image retrieval (CBIR) is an image search technique that complements the conventional text-based retrieval of images by using visual features, such as color, texture, and shape, as search criteria. This book emphasizes the design of wavelet filter-banks as efficient and effective feature descriptors for medical image retrieval. Firstly, a generalized novel design of a family of multiplier-free orthogonal wavelet filter-banks is presented. In this, the dyadic filter coefficients are obtained based on double-shifting orthogonality property with allowable deviation from original filter coefficients. Next, a low complex symmetric Daub-4 orthogonal wavelet filter-bank is presented. This is achieved by slightly altering the perfect reconstruction condition to make designed filter-bank symmetric and to obtain dyadic filter coefficients. In third contribution, the first dyadic Gabor wavelet filter-bank is presented based on slight alteration in orientation parameter without disturbing remaining Gabor wavelet parameters. In addition, a novel feature descriptor based on the design of adaptive Gabor wavelet filter-bank is presented. The use of Maximum likelihood estimation is suggested to measure the similarity between the feature vectors of heterogeneous medical images. The performance of the suggested methods is evaluated on three different publicly available databases namely NEMA, OASIS and EXACT09. The performance in terms of average retrieval precision, average retrieval recall and computational time are compared with well-known existing methods.

Author Biography:

Dr. Aswini Kumar Samantaray received his B.Tech. and M.Tech. degree in electronics and communication engineering from Biju Patanaik University of Technology, Odisha, India in 2008 and 2012 respectively. He received his Ph.D. degree from National Institute of Technology Goa (NIT Goa), India in 2022. He worked as an Assistant Professor with the C. V. Raman College of Engineering from 2008 to 2018. He is currently working as an assistant professor with electronics and communication engineering, Vignan’s Foundation for Science, Tecchnology and Research, Guntur, India. His research interests include the design of wavelets and filter-banks, image processing, and FPGA accelerators.   Dr. Amol D. Rahulkar received the B.E. degree in instrumentation engineering from the Shri Guru Gobind Singhji (SGGS) Institute of Engineering and Technology, Nanded, India, in 2000, the M.Tech. degree from the Indian Institute of Technology (IIT) Kharagpur, India, in 2002, and the Ph.D. degree from the SGGS Institute of Engineering and Technology, Nanded, affiliated to Swami Ramanand Teerth Marathwada University Nanded, India, in 2013. He is currently working as an Associate Professor with the Department of Electrical and Electronics Engineering, National Institute of Technology Goa (NIT Goa), India. His current research interests include the design of wavelets and filter-banks, digital signal processing, image processing, biometrics, FPGA accelerators, and soft-computing.
Release date Australia
May 27th, 2024
Audience
  • Professional & Vocational
Edition
1st ed. 2024
Illustrations
10 Illustrations, color; 45 Illustrations, black and white; X, 190 p.
Pages
155
ISBN-13
9783031572784
Product ID
38707525

Customer previews

Nobody has previewed this product yet. You could be the first!

Write a Preview

Help & options

Filed under...