Non-Fiction Books:

High Temperature Miniature Specimen Test Methods

Click to share your rating 0 ratings (0.0/5.0 average) Thanks for your vote!

Format:

Paperback / softback
$364.99
Available from supplier

The item is brand new and in-stock with one of our preferred suppliers. The item will ship from a Mighty Ape warehouse within the timeframe shown.

Usually ships in 2-3 weeks

Buy Now, Pay Later with:

4 payments of $91.25 with Afterpay Learn more

Availability

Delivering to:

Estimated arrival:

  • Around 17-27 June using International Courier

Description

High Temperature Miniature Specimen Test Methods focuses on a comprehensive and thorough introduction to a range of high temperature, miniaturized test methods at elevated temperatures which are used to obtain “bulk” creep or fatigue properties from a small volume of material. The book will be of use to a wide range of audience of engineers (e.g., designers, manufacturers, metallurgists, stress analysts), researchers (e.g., materials scientists) and students (undergraduate and postgraduate) in the field of high-temperature material and structural integrity assessment. Specific novel features include 1] theoretical basis of each method; 2], data interpretation method of each test, and 3] specific applications.

Author Biography:

Wei Sun Ph.D DS.c was a Professor of Mechanical Engineering at the University of Nottingham, and has been working on creep, fatigue, cyclic plasticity, and the miniaturized specimen test methods at high temperatures for > 25 years. He has supervised 40 Ph.D projects (> 10 related to high temperature small specimen testing). He is an author of 260 international journal articles (63 related to high-temperature miniature specimen tests), 170 conference contributions (14 plenary/keynote lectures) and one textbook (Applied Creep Mechanics. McGraw-Hill 2013). He became Charted Engineer in 1998, a Fellow of The Institution of Mechanical Engineers in 2002, and a Fellow of The Institute of Materials in 2009. Prof. Sun has been an Emeritus Professor at the University of Nottingham since he retired in 2020, and currently is a member of EU CEN Impression Creep Standard Committe. Zhufeng Yue Ph.D is a Professor of Engineering Mechanics at the Northwestern Polytechnical University. Prof. Yue is a renowned expert on engineering mechanics, covering computational solid mechanics, high temperature structural integrity, fatigue, creep, plasticity, superplasticity, fretting and wear, computational methods in manufacturing process, and miniature specimen testing at elevated temperatures, with a focus on the multi-scale and multi-physics material modelling of single crystal superalloys. Prof. Yue has supervised 90 Ph.D students and is an author of 300 English journal articles, 260 conference contributions including 24 keynote lectures, 50 patents and 17 textbooks Prof. Yue has held adjunct professorships at Tongji University and Zhejiang University in China, and has been the Editor in Chief of the journal “Multidiscipline Modelling in Materials and Structure” since 2005. is a Professor of Mechanical Engineering at the East China University of Science and Technology. She has been working on high-temperature mechanics, related to creep and fatigue, thermal-mechanical coupling interaction, and miniature specimen testing. Prof. Zhou has developed several high-temperature miniaturized creep test methods and evaluation procedures using miniature beam and semi-circle ring specimens, which have been used in the structural integrity and safety assessment for turbine rotors, hydrogenation reactors and other equipment. Zhufeng Yue Ph.D is a Professor of Engineering Mechanics at the Northwestern Polytechnical University. Prof. Yue is a renowned expert on engineering mechanics, covering computational solid mechanics, high temperature structural integrity, fatigue, creep, plasticity, superplasticity, fretting and wear, computational methods in manufacturing process, and miniature specimen testing at elevated temperatures, with a focus on the multi-scale and multi-physics material modelling of single crystal superalloys. Prof. Yue has supervised 90 Ph.D students and is an author of 300 English journal articles, 260 conference contributions including 24 keynote lectures, 50 patents and 17 textbooks Prof. Yue has held adjunct professorships at Tongji University and Zhejiang University in China, and has been the Editor in Chief of the journal “Multidiscipline Modelling in Materials and Structure” since 2005. Ming Li is a Professor of Engineering Mechanics at the Northwestern Polytechnical University since 2021. He received his Ph.D in Mechanical Engineering in 2018 at the National University of Ireland, Galway, followed by a research fellow at University of Nottingham (2019-2021) in United Kingdom. During his Ph.D, he studied at University of Limerick as a visiting scholar in Ireland (2017-2018). Prof. Ming’s research interests focus on the multi-scale modelling method of high temperature superalloys. He has developed a high temperature fatigue test method by using a miniature thin-plate specimen for a supperalloy at high temperature. The miniaturized test method developed has exhibited a clear possibility to produce comparable low cycle fatigue behavior and creep-fatigue behavior with those which are normally obtained by conventional standard specimen tests.
Release date Australia
October 27th, 2023
Audience
  • Professional & Vocational
Pages
286
ISBN-13
9780443218972
Product ID
37447326

Customer reviews

Nobody has reviewed this product yet. You could be the first!

Write a Review

Marketplace listings

There are no Marketplace listings available for this product currently.
Already own it? Create a free listing and pay just 9% commission when it sells!

Sell Yours Here

Help & options

Filed under...