Non-Fiction Books:

Intermittent Convex Integration for the 3D Euler Equations

(AMS-217)
Click to share your rating 0 ratings (0.0/5.0 average) Thanks for your vote!
$197.99
Available from supplier

The item is brand new and in-stock with one of our preferred suppliers. The item will ship from a Mighty Ape warehouse within the timeframe shown.

Usually ships in 3-4 weeks

Buy Now, Pay Later with:

4 payments of $49.50 with Afterpay Learn more

Availability

Delivering to:

Estimated arrival:

  • Around 13-25 June using International Courier

Description

A new threshold for the existence of weak solutions to the incompressible Euler equations To gain insight into the nature of turbulent fluids, mathematicians start from experimental facts, translate them into mathematical properties for solutions of the fundamental fluids PDEs, and construct solutions to these PDEs that exhibit turbulent properties. This book belongs to such a program, one that has brought convex integration techniques into hydrodynamics. Convex integration techniques have been used to produce solutions with precise regularity, which are necessary for the resolution of the Onsager conjecture for the 3D Euler equations, or solutions with intermittency, which are necessary for the construction of dissipative weak solutions for the Navier-Stokes equations. In this book, weak solutions to the 3D Euler equations are constructed for the first time with both non-negligible regularity and intermittency. These solutions enjoy a spatial regularity index in L^2 that can be taken as close as desired to 1/2, thus lying at the threshold of all known convex integration methods. This property matches the measured intermittent nature of turbulent flows. The construction of such solutions requires technology specifically adapted to the inhomogeneities inherent in intermittent solutions. The main technical contribution of this book is to develop convex integration techniques at the local rather than global level. This localization procedure functions as an ad hoc wavelet decomposition of the solution, carrying information about position, amplitude, and frequency in both Lagrangian and Eulerian coordinates.

Author Biography:

Tristan Buckmaster is professor of mathematics at the University of Maryland. Nader Masmoudi is professor of mathematics at New York University. Matthew Novack is assistant professor of mathematics at Purdue University. Vlad Vicol is professor of mathematics at New York University.
Release date Australia
July 11th, 2023
Audience
  • General (US: Trade)
Illustrations
11 b/w illus.
Pages
256
ISBN-13
9780691249544
Product ID
36078096

Customer reviews

Nobody has reviewed this product yet. You could be the first!

Write a Review

Marketplace listings

There are no Marketplace listings available for this product currently.
Already own it? Create a free listing and pay just 9% commission when it sells!

Sell Yours Here

Help & options

Filed under...