Non-Fiction Books:

Software Synthesis from Dataflow Graphs

Click to share your rating 0 ratings (0.0/5.0 average) Thanks for your vote!
$265.99
RRP:
$367.95 save $101.96
Available from supplier

The item is brand new and in-stock with one of our preferred suppliers. The item will ship from a Mighty Ape warehouse within the timeframe shown.

Usually ships in 3-4 weeks

Buy Now, Pay Later with:

4 payments of $66.50 with Afterpay Learn more

Availability

Delivering to:

Estimated arrival:

  • Around 13-25 June using International Courier

Description

This text addresses the problem of generating efficient software implementations from applications specified as synchronous dataflow graphs for programmable digital signal processors (DSPs) used in embedded real- time systems. The advent of high-speed graphics workstations has made feasible the use of graphical block diagram programming environments by designers of signal processing systems. A particular subset of dataflow, called Synchronous Dataflow (SDF), has proven efficient for representing a wide class of unirate and multirate signal processing algorithms, and has been used as the basis for numerous DSP block diagram-based programming environments such as the Signal Processing Workstation from Cadence Design Systems, Inc., COSSAP from Synopsys TM (both commercial tools), and the Ptolemy environment from the University of California at Berkeley. A key property of the SDF model is that static schedules can be determined at compile time. This removes the overhead of dynamic scheduling and is thus useful for real-time DSP programs where throughput requirements are often severe. Another constraint that programmable DSPs for embedded systems have is the limited amount of on-chip memory. Off-chip memory is not only expensive but is also slower and increases the power consumption of the system; hence, it is imperative that programs fit in the on-chip memory whenever possible. This book reviews the state of the art in constructing static, memory-optimal schedules for programs expressed as SDF graphs. Code size reduction is obtained by the careful organization of loops in the target code. Data buffering is optimized by constructing the loop hierarchy in provably optimal ways for many classes of SDF graphs. The central result is a uniprocessor scheduling framework that provably synthesizes the most compact looping structures, called single appearance schedules, for a certain class of SDF graphs. In addition, algorithms and heuristics are presented that generate single appearance schedules optimized for data buffering usage. Numerous practical examples and extensive experimental data are provided to illustrate the efficacy of these techniques.
Release date Australia
May 31st, 1996
Audience
  • Professional & Vocational
Illustrations
XII, 190 p.
Pages
190
Dimensions
156x234x12
ISBN-13
9780792397229
Product ID
2438419

Customer reviews

Nobody has reviewed this product yet. You could be the first!

Write a Review

Marketplace listings

There are no Marketplace listings available for this product currently.
Already own it? Create a free listing and pay just 9% commission when it sells!

Sell Yours Here

Help & options

Filed under...