Non-Fiction Books:

Traffic Congestion Control by PDE Backstepping

Click to share your rating 0 ratings (0.0/5.0 average) Thanks for your vote!
$381.99
Available from supplier

The item is brand new and in-stock with one of our preferred suppliers. The item will ship from a Mighty Ape warehouse within the timeframe shown.

Usually ships in 3-4 weeks

Buy Now, Pay Later with:

4 payments of $95.50 with Afterpay Learn more

Availability

Delivering to:

Estimated arrival:

  • Around 13-25 June using International Courier

Description

This monograph explores the design of controllers that suppress oscillations and instabilities in congested traffic flow using PDE backstepping methods. The first part of the text is concerned with basic backstepping control of freeway traffic using the Aw-Rascle-Zhang (ARZ) second-order PDE model. It begins by illustrating a basic control problem – suppressing traffic with stop-and-go oscillations downstream of ramp metering – before turning to the more challenging case for traffic upstream of ramp metering. The authors demonstrate how to design state observers for the purpose of stabilization using output-feedback control. Experimental traffic data are then used to calibrate the ARZ model and validate the boundary observer design. Because large uncertainties may arise in traffic models, adaptive control and reinforcement learning methods are also explored in detail.  Part II then extends the conventional ARZ model utilized until this point in orderto address more complex traffic conditions: multi-lane traffic, multi-class traffic, networks of freeway segments, and driver use of routing apps. The final chapters demonstrate the use of the Lighthill-Whitham-Richards (LWR) first-order PDE model to regulate congestion in traffic flows and to optimize flow through a bottleneck. In order to make the text self-contained, an introduction to the PDE backstepping method for systems of coupled first-order hyperbolic PDEs is included.   Traffic Congestion Control by PDE Backstepping is ideal for control theorists working on control of systems modeled by PDEs and for traffic engineers and applied scientists working on unsteady traffic flows. It will also be a valuable resource for researchers interested in boundary control of coupled systems of first-order hyperbolic PDEs.

Author Biography:

Huan Yu is an Assistant Professor in the Thrust of Intelligent Transportation at the Hong Kong University of Science and Technology (Guangzhou), and a joint Assistant Professor in the Department of Civil and Environmental Engineering at the Hong Kong University of Science and Technology. She received her Ph.D. degree from University of California, San Diego. She was a visiting scholar at University of California, Berkeley and Massachusetts Institute of Technology.  Miroslav Krstic is Fellow of SIAM, IEEE, IFAC, ASME, AAAS, IET, AIAA (AF), and the Serbian Academy of Sciences and Arts. His awards include the Bellman, Reid, Oldenburger, Ragazzini, Chestnut, Paynter, Nyquist Lecture, IFAC Nonlinear Control , IFAC Ruth Curtain DPS, Balakrishnan, Axelby, and Schuck (’96 and ’19). He has served as EiC or senior editor in Systems & Control Letters, Automatica, and IEEE Transactions on Automatic Control. Four of Krstic’s 18 coauthoredbooks have been with this Birkhäuser series, including the single-authored Delay Compensation for Nonlinear, Adaptive, and PDE Systems. 
Release date Australia
December 18th, 2023
Pages
356
Edition
1st ed. 2022
Audiences
  • Postgraduate, Research & Scholarly
  • Professional & Vocational
Illustrations
XVII, 356 p.
ISBN-13
9783031193484
Product ID
38437275

Customer reviews

Nobody has reviewed this product yet. You could be the first!

Write a Review

Marketplace listings

There are no Marketplace listings available for this product currently.
Already own it? Create a free listing and pay just 9% commission when it sells!

Sell Yours Here

Help & options

Filed under...