Non-Fiction Books:

Investigation into High Efficiency Visible Light Photocatalysts for Water Reduction and Oxidation

Click to share your rating 0 ratings (0.0/5.0 average) Thanks for your vote!

Format:

Paperback / softback
$260.99
Available from supplier

The item is brand new and in-stock with one of our preferred suppliers. The item will ship from a Mighty Ape warehouse within the timeframe shown.

Usually ships in 3-4 weeks

Buy Now, Pay Later with:

4 payments of $65.25 with Afterpay Learn more

Availability

Delivering to:

Estimated arrival:

  • Around 28 Jun - 10 Jul using International Courier

Description

This thesis describes novel strategies for the rational design of several cutting-edge high-efficiency photocatalysts, for applications such as water photooxidation, reduction, and overall splitting using a Z-Scheme system. As such, it focuses on efficient strategies for reducing energy loss by controlling charge transfer and separation, including novel faceted forms of silver phosphate for water photooxidation at record high rates, surface-basic highly polymerised graphitic carbon nitride for extremely efficient hydrogen production, and the first example of overall water splitting using a graphitic carbon nitride-based Z-Scheme system. Photocatalytic water splitting using solar irradiation can potentially offer a zero-carbon renewable energy source, yielding hydrogen and oxygen as clean products. These two ‘solar’ products can be used directly in fuel cells or combustion to provide clean electricity or other energy. Alternatively they can be utilised as separate entities for feedstock-based reactions, and are considered to be the two cornerstones of hydrogenation and oxidation reactions, including the production of methanol as a safe/portable fuel, or conventional catalytic reactions such as Fischer-Tropsch synthesis and ethylene oxide production. The main driving force behind the investigation is the fact that no photocatalyst system has yet reported combined high efficiency, high stability, and cost effectiveness; though cheap and stable, most suffer from low efficiency.

Author Biography:

Dr. David James Martin studied Physics at the University of Liverpool (MPhys), and then completed a PhD in Chemical Engineering at University College London (UCL) under the tutelage of Dr. Junwang Tang. His thesis focused on the oxidation, reduction, and overall splitting of water using visible light photocatalysts. David is currently a UCL Chemistry research associate working with Dr. Andrew Beale. David’s present research focuses on X-ray diffraction and scattering techniques for in situ characterisation of heterogeneous catalysts. David has a comprehensive and complementary background in photocatalysis for water splitting and heterogeneous catalysis with expertise focused on in situ/operando methods for materials characterisation.
Release date Australia
October 9th, 2016
Audience
  • Professional & Vocational
Edition
Softcover reprint of the original 1st ed. 2015
Illustrations
62 Illustrations, color; 14 Illustrations, black and white; XXVIII, 149 p. 76 illus., 62 illus. in color.
Pages
149
Dimensions
155x235x10
ISBN-13
9783319369501
Product ID
26132684

Customer reviews

Nobody has reviewed this product yet. You could be the first!

Write a Review

Marketplace listings

There are no Marketplace listings available for this product currently.
Already own it? Create a free listing and pay just 9% commission when it sells!

Sell Yours Here

Help & options

Filed under...